
HyTGraph:GPU-Accelerated Graph Processing with Hybrid
Transfer Management

Qiange Wang* , Xin Ai*, Yanfeng Zhang, Jing Chen, Ge Yu
School of Computer Science and Engineering

Northeastern University, Shenyang, China

Graph Processing

2

Social Network Human Genome

Vertex: real-world entity

Edge: dependency between entities

Web Architecture

a c

db

e

f

CPU and GPU

3

p CPU：Large Memory Capacity(main memory)；Low Parallelism
p GPU：Limited Memeory Capacity；High Parallelism

CORE CORE

CORE CORE

CORE

CORE

Host Mem.

Global Mem.

CPU GPU

GPU-Accelerated Graph Processing

4

a c

db

e

f

Suitable for GPU processing

a

b

c

CORE

CORE

CORE

Graph Data Vertex-centric
programming

... ...

GPU

Existing Works

5

Early works mainly focused on the internal-GPU bottlenecks
p Programming Model： [HiPC’07], [TPDS’14], [HPDC’14]

p Irregular Memory Access: [HPDC’14], [ASPLOS’18], [HPCA’14]

p Propagation Direction: [PPOPP’19]

p Asynchronous Processing: [PPOPP’17], [PPOPP’19]

Existing Works

6

Early works mainly focused on the inner-GPU bottlenecks
p Programming Model： [HiPC’07], [TPDS’14], [HPDC’14]

p Irregular Memory Access: [HPDC’14], [ASPLOS’18], [HPCA’14]

p Propagation Direction: [PPOPP’19]

p Asynchronous Processing: [PPOPP’17], [PPOPP’19]

All these works assume that the GPU(s) can accommodate
the whole graph.

Existing Works

7

Graph |V| |E| Size

Twitter-14 52.5M 1.96B 32GB

Web-uk-07 105.1M 3.31B 55GB

Friendster-S 65.6M 3.61B 58GB

weibo-13 72.4M 6.43B 127GB

GPU Dev. Mem.

GTX2080Ti 11GB

Tesla-T4 16GB

Tesla-V100 16GB

GTX-3090Ti 24GB

GPU Device Memory Dataset description

Early works mainly focused on the inner-GPU bottlenecks
p Programming Model： [HiPC’07], [TPDS’14], [HPDC’14]

p Irregular Memory Access: [HPDC’14], [ASPLOS’18], [HPCA’14]

p Propagation Direction: [PPOPP’19]

p Asynchronous Processing: [PPOPP’17], [PPOPP’19]

All these works assume that the GPU(s) can accommodate
the whole graph.

GPU-accelerated Graph Processing

8

① Partitioning the graph
in the host memory

③ Parallel processing② Loading
partitions

CPU GPU

P 0 P 1 P n…

P i

ALU ALU

ALU ALU

ALU

ALU

PCIe

SMX

16GB/Sec

The Key Challenge: Data Transfer

9

CPU GPU

P 0 P 1 P n…

P i

ALU ALU

ALU ALU

ALU

ALU

PCIe
900GB/Sec

The Key Challenge: Data Transfer

10

16GB/Sec

CPU GPU

P 0 P 1 P n…

P i

ALU ALU

ALU ALU

ALU

ALU

PCIe

Minimizing H-G data transfer is
critical to the performance

900GB/Sec

The Existing Transfer Reduction Method

11

p Explicit Transfer Management method

p Implicit Transfer Management method

a c

db

e6 2

3 1

1

2 1

f
3 2

4

2 2
5

8

0 00

3
6

9

2
4
3

0

4
8

iter 0 iter 1 iter 2 iter 3

0
b
c

a

e
f

d

∞
∞

∞
∞

∞
∞
∞

∞

iter 4

2
4
3
4

0

6

2
4
3
4

0

6

iter 5

 [VLDB’20], [TACO’21], [VLDB’20]

 [SC’15] [ATC’19], [SIGMOD’16]
[ATC’20], [Eurosys’20], [ICPP’21]

p Explicit Transfer Management method

p Implicit Transfer Management method
2 2

5

8

0 00

3
6

9

2
4
3

0

4
8

iter 0 iter 1 iter 2 iter 3

0
b
c

a

e
f

d

∞
∞

∞
∞

∞
∞
∞

∞

iter 4

2
4
3
4

0

6

2
4
3
4

0

6

iter 5

The Existing Transfer Reduction Method

12

a c

db

e6 2

3 1

1

2 1

f
3 2

4

 [VLDB’20], [TACO’21], [VLDB’20]

 [SC’15] [ATC’19], [SIGMOD’16]
[ATC’20], [Eurosys’20], [ICPP’21]

p Explicit Transfer Management method

p Implicit Transfer Management method
2

5

8

0

3
6

9

4

4
8

iter 0 iter 1 iter 2 iter 3

0
b
c

a

e
f

d

iter 4

6

iter 5

The Existing Transfer Reduction Method

13

a c

db

e6 2

3 1

1

2 1

f
3 2

4

 [VLDB’20], [TACO’21], [VLDB’20]

 [SC’15] [ATC’19], [SIGMOD’16]
[ATC’20], [Eurosys’20], [ICPP’21]

Explicit Transfer Management

14

p Explicit Transfer Management method
Using CPU(s) to actively compact/ filter to-be-transferred
partitions on the host side.

 [SC’15] [ATC’19], [SIGMOD’16]
[ATC’20], [Eurosys’20], [ICPP’21]

[VLDB’20], [TACO’21] [VLDB’20] P 0 P 1 P n…

P i

Host

Filter/Compact
module

P’i

PCIe

P’i
GPU

Active Vertices

Graph App

graph

p Implicit Transfer Management method
Using unified memory or zero-copy (DMA) memory
to manage the graph data, which enables GPU to
transfer the required subgraph automatically.

cudaMemCpy

Explicit Transfer Management with Filtering

15

Identifying and transferring those partitions containing active edges
p CPU-based Filtering (with almost no cost)
p Explicit Memory Copy (cudaMemCpy())

Explicit Transfer Management with Filtering

16

Identifying and transferring those partitions containing active edges
p CPU-based Filtering (with almost no cost)
p Explicit Memory Copy (cudaMemCpy())

p High bandwidth utilization

p Low CPU processing overhead

p Heavy redundant data transfer

Explicit Transfer Management with Compaction

17

Compacting the active edges for each partition and transferring the shrunk partition.
p CPU-based Compaction
p Explicit Memory copy (cudaMemCpy())

Explicit Transfer Management with Compaction

18

Compacting the active edges for each partition and transferring the shrunk partition.
p CPU-based Compaction
p Explicit Memory copy (cudaMemCpy())

p High Bandwidth Utilization

p No redundant data transfer

p Expensive CPU processing

overhead

Implicit Transfer Management

19

Graph

Host

PCIe

GPU
Graph App

Active Vertices

p Explicit Transfer Management method
Using CPU(s) to actively compact/ filter to-be-transferred
partitions on the host side.

 [SC’15] [ATC’19], [SIGMOD’16]
[ATC’20], [Eurosys’20], [ICPP’21]

[VLDB’20], [TACO’21] [VLDB’20]

p Implicit Transfer Management method
Using unified memory or zero-copy (DMA) memory
to manage the graph data, which enables GPU to
transfer the required subgraph automatically.

Unified Memory/
Zero-copy

Implicit Transfer Management with Zero-Copy

20

Directly accessing the host graph with PCIe requests (DMA).
p Relying on the Transaction Layer Packet (TLP) of PCIe to achieve
 fine-grained on-demand memory access.

Implicit Transfer Management with Zero-Copy

21

Directly accessing the host graph with PCIe requests (DMA).
p Relying on the Transaction Layer Packet (TLP) of PCIe to achieve
 fine-grained on-demand memory access.

p No CPU processing overhead

p Negligible redundant data

transfer

p Unstable bandwidth utilization

Implicit Transfer Management with UVM

22

Transferring the subgraph implicitly with unified-virtual-memory (UVM).
p UVM enables GPU to cache transferred data with device memory
p UVM can not fully utilize the PCIe bandwidth

UVM bandwidth utilization [EMOGI:VLDB’20]

Implicit Transfer Management with UVM

23

Transferring the subgraph implicitly with unified-virtual-memory (UVM).
p UVM enables GPU to cache transferred data with device memory
p UVM can not fully utilize the PCIe bandwidth

p No CPU processing overhead

p Medium redundant data

transfer

p Low bandwidth utilization

Comparison of the Existing Approaches

24

Total Transfer Cost= Trans_Vol./(Bdw.*Bdw_Util.)+ Prune_Cost

Low Trans_Vol

Low Prune_Cost High Bdw_Util

Comparison of the Existing Approaches

25

Total Transfer Cost= Trans_Vol./(Bdw.*Bdw_Util.)+ Prune_Cost

Low Trans_Vol

Low Prune_Cost High Bdw_Util

Exp-Filter(E-F)

Exp-Compact(E-C)

Imp-Zero-Copy(I-ZC)

Imp-Uni-Mem(I-UM)

Comparison of the Existing Approaches

26

Exp-Filter(E-F)

Exp-Compact(E-C)

Imp-Zero-Copy(I-ZC)

Total Transfer Cost= Trans_Vol./(Bdw.*Bdw_Util.)+ Prune_Cost

Low Trans_Vol

Low Prune_Cost High Bdw_Util

Imp-Uni-Mem(I-UM)

Our Approach: Hybrid Transfer Management

27

Adaptively selecting the transfer method for each partition by using:
p Trans_Cost= Trans_Vol./(Bdw.*Bdw_Util.)+ Prune_Cost

p Trans_Cost(I-ZC) = Trans_Vol. / (Bdw. * Bdw_Util.)

(a) ExpTM-Filter

(b) ExpTM-Compaction

(c) ImpTM-Zero-Copy

p Trans_Cost(E-F) = Trans_Vol. / Bdw.

p Trans_Cost(E-C) = Trans_Vol. / Bdw. + Prune_Cost

Our Approach: Hybrid Transfer Management

28

HyTGraph

29

HyTGraph uses a partitioning-based approach to manage the transfer
p Cost-Aware Task Generation:

1. Cost Analyzer
2. Engine Selector
3. Task Combiner

p Asynchronous Task Scheduling:
 1. Contribution Driven Scheduling
 2. Multi-Stream Scheduling

HyTGraph

30

HyTGraph uses a partitioning-based approach to manage the transfer
p Cost-Aware Task Generation:

1. Cost Analyzer
2. Engine Selector
3. Task Combiner

p Asynchronous Task Scheduling:
 1. Contribution Driven Scheduling
 2. Multi-Stream Scheduling

HyTGraph

31

HyTGraph uses a partitioning-based approach to manage the transfer
p Cost-Aware Task Generation:

1. Cost Analyzer
2. Engine Selector
3. Task Combiner

p Asynchronous Task Scheduling:
 1. Contribution Driven Scheduling
 2. Multi-Stream Scheduling

Experimental Setting

32

Competitors: [TACO’21], [Eurosys’20], [VLDB’20].
(SEP-GRAPH), (SEP-GRAPH)

Test Platforms:
 Intel Silver 4210 10-core CPU, 128GB DRAM, 1 NVIDIA-GTX 2080Ti GPU(34
SMXs, 4352 cores, 11GB GDDR6 RAM)

Algorithms and Datasets:
p 4 graph analytical algorithms：

BFS, CC, SSSP, PageRank
p 5 real world graphs, and 1
 synthesized graph with

Softeware Environment：
p Ubuntu 18.04 LTS
p CUDA 10.1 (418.67 driver)

Overall Results

33

HyTGraph shows better performance
than the competitors on most cases.

p 2.01X-28.5X faster than ExpTM-F

p 2.4X-10.3X faster than ExpTM-C ()

p 1.1X-6.5X faster than ImpTM-ZC ()

p 2.4-13.1X faster than ImpTM-UM ()

Transfer Reduction Analysis

34

effectively reduces the

data transfer, and its performance is

close to the SOTA ().

achieves minimum data

transfer on more graphs.

5.1X9.1X4.8X45.3X

Scaling-Up Performance

35

The experiments on synthesized graphs show that shows the best
scaling-up performance when expanding the graph size by 64 times.
PageRank: (231.2X), (OOM), (111.6X), (105.4X)
SSSP: (111.8X), (OOM), (57.1X), (49.0X)

36

Questions

 Thanks for your listening

