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Graph Processing
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Social Network Human Genome

Vertex: real-world entity

Edge: dependency between entities

Web Architecture
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CPU and GPU
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p CPU：Large Memory Capacity(main memory)；Low Parallelism
p GPU：Limited Memeory Capacity；High Parallelism   
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GPU-Accelerated Graph Processing
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Existing Works
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Early works mainly focused on the internal-GPU bottlenecks
p Programming Model： [HiPC’07], [TPDS’14], [HPDC’14]

p Irregular Memory Access: [HPDC’14],  [ASPLOS’18], [HPCA’14]

p Propagation Direction: [PPOPP’19]

p Asynchronous Processing: [PPOPP’17], [PPOPP’19]
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Early works mainly focused on the inner-GPU bottlenecks
p Programming Model： [HiPC’07], [TPDS’14], [HPDC’14]

p Irregular Memory Access: [HPDC’14],  [ASPLOS’18], [HPCA’14]

p Propagation Direction: [PPOPP’19]

p Asynchronous Processing: [PPOPP’17], [PPOPP’19]

All these works assume that the GPU(s) can accommodate 
the whole graph.
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Graph |V| |E| Size

Twitter-14 52.5M 1.96B 32GB

Web-uk-07 105.1M 3.31B 55GB

Friendster-S 65.6M 3.61B 58GB

weibo-13 72.4M 6.43B 127GB

GPU Dev. Mem.

GTX2080Ti 11GB

Tesla-T4 16GB

Tesla-V100 16GB

GTX-3090Ti 24GB

GPU Device Memory Dataset description

Early works mainly focused on the inner-GPU bottlenecks
p Programming Model： [HiPC’07], [TPDS’14], [HPDC’14]

p Irregular Memory Access: [HPDC’14],  [ASPLOS’18], [HPCA’14]

p Propagation Direction: [PPOPP’19]

p Asynchronous Processing: [PPOPP’17], [PPOPP’19]

All these works assume that the GPU(s) can accommodate 
the whole graph.



GPU-accelerated Graph Processing
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① Partitioning the graph 
in the host memory

③ Parallel  processing② Loading 
partitions

CPU GPU
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16GB/Sec

The Key Challenge: Data Transfer

9

CPU GPU

P 0 P 1 P n…

P i

ALU ALU

ALU ALU

ALU

ALU

PCIe
900GB/Sec



The Key Challenge: Data Transfer
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16GB/Sec

CPU GPU
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P i
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Minimizing H-G data transfer is 
critical to the performance 

900GB/Sec



The Existing Transfer Reduction Method
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p Explicit Transfer Management method

p Implicit Transfer Management method   
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 [VLDB’20], [TACO’21],  [VLDB’20]

 [SC’15]  [ATC’19],  [SIGMOD’16]
[ATC’20],  [Eurosys’20],  [ICPP’21]
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p Implicit Transfer Management method   
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Explicit Transfer Management
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p Explicit Transfer Management method
Using CPU(s) to actively compact/ filter to-be-transferred 
partitions on the host side.   

 [SC’15]  [ATC’19],  [SIGMOD’16]
[ATC’20],  [Eurosys’20],  [ICPP’21]

[VLDB’20], [TACO’21]  [VLDB’20] P 0 P 1 P n…
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graph

p Implicit Transfer Management method
Using unified memory or zero-copy (DMA) memory 
to manage the graph data, which enables GPU to 
transfer the required subgraph automatically.

cudaMemCpy



Explicit Transfer Management with Filtering
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Identifying and transferring those partitions containing active edges
p CPU-based Filtering (with almost no cost)
p Explicit Memory Copy (cudaMemCpy() )



Explicit Transfer Management with Filtering
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Identifying and transferring those partitions containing active edges
p CPU-based Filtering (with almost no cost)
p Explicit Memory Copy (cudaMemCpy() )

p High bandwidth utilization

p Low CPU processing overhead

p Heavy redundant data transfer



Explicit Transfer Management with Compaction
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Compacting the active edges for each partition and transferring the shrunk partition.
p CPU-based Compaction
p Explicit Memory copy (cudaMemCpy() )



Explicit Transfer Management with Compaction
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Compacting the active edges for each partition and transferring the shrunk partition.
p CPU-based Compaction
p Explicit Memory copy (cudaMemCpy() )

p High Bandwidth Utilization

p No redundant data transfer

p Expensive CPU processing 

overhead



Implicit Transfer Management
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p Explicit Transfer Management method
Using CPU(s) to actively compact/ filter to-be-transferred 
partitions on the host side.   

 [SC’15]  [ATC’19],  [SIGMOD’16]
[ATC’20],  [Eurosys’20],  [ICPP’21]

[VLDB’20], [TACO’21]  [VLDB’20]

p Implicit Transfer Management method
Using unified memory or zero-copy (DMA) memory 
to manage the graph data, which enables GPU to 
transfer the required subgraph automatically.

Unified Memory/
Zero-copy



Implicit Transfer Management with Zero-Copy
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Directly accessing the host graph with PCIe requests (DMA).
p Relying on the Transaction Layer Packet (TLP) of PCIe to achieve 
        fine-grained on-demand memory access.



Implicit Transfer Management with Zero-Copy
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Directly accessing the host graph with PCIe requests (DMA).
p Relying on the Transaction Layer Packet (TLP) of PCIe to achieve 
        fine-grained on-demand memory access.

p No CPU processing overhead

p Negligible redundant data 

transfer

p Unstable bandwidth utilization



Implicit Transfer Management with UVM
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Transferring the subgraph implicitly with unified-virtual-memory (UVM).
p UVM enables GPU to cache transferred data with device memory
p UVM can not fully utilize the PCIe bandwidth

UVM bandwidth utilization [EMOGI:VLDB’20 ]



Implicit Transfer Management with UVM
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Transferring the subgraph implicitly with unified-virtual-memory (UVM).
p UVM enables GPU to cache transferred data with device memory
p UVM can not fully utilize the PCIe bandwidth

p No CPU processing overhead

p Medium redundant data 

transfer

p Low bandwidth utilization



Comparison of the Existing Approaches
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Total Transfer Cost= Trans_Vol./(Bdw.*Bdw_Util.)+ Prune_Cost

Low Trans_Vol

Low Prune_Cost High Bdw_Util



Comparison of the Existing Approaches
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Total Transfer Cost= Trans_Vol./(Bdw.*Bdw_Util.)+ Prune_Cost

Low Trans_Vol

Low Prune_Cost High Bdw_Util

Exp-Filter(E-F)

Exp-Compact(E-C)

Imp-Zero-Copy(I-ZC)

Imp-Uni-Mem(I-UM)



Comparison of the Existing Approaches
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Exp-Filter(E-F)

Exp-Compact(E-C)

Imp-Zero-Copy(I-ZC)

Total Transfer Cost= Trans_Vol./(Bdw.*Bdw_Util.)+ Prune_Cost

Low Trans_Vol

Low Prune_Cost High Bdw_Util

Imp-Uni-Mem(I-UM)



Our Approach: Hybrid Transfer Management
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Adaptively selecting the transfer method  for each partition by using:
p Trans_Cost= Trans_Vol./(Bdw.*Bdw_Util.)+ Prune_Cost

p  Trans_Cost(I-ZC)   =   Trans_Vol. / (Bdw. * Bdw_Util.)

(a) ExpTM-Filter

(b) ExpTM-Compaction

(c) ImpTM-Zero-Copy

p Trans_Cost(E-F)      =    Trans_Vol. / Bdw. 

p Trans_Cost(E-C)    =  Trans_Vol. / Bdw. + Prune_Cost



Our Approach: Hybrid Transfer Management
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HyTGraph
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HyTGraph uses a partitioning-based approach to manage the transfer
p Cost-Aware Task Generation:

1. Cost Analyzer
2. Engine Selector
3. Task Combiner

p Asynchronous Task Scheduling:
          1. Contribution Driven Scheduling
         2. Multi-Stream Scheduling
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HyTGraph
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HyTGraph uses a partitioning-based approach to manage the transfer
p Cost-Aware Task Generation:

1. Cost Analyzer
2. Engine Selector
3. Task Combiner

p Asynchronous Task Scheduling:
          1. Contribution Driven Scheduling
         2. Multi-Stream Scheduling



Experimental Setting
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Competitors:  [TACO’21], [Eurosys’20],  [VLDB’20]. 
(SEP-GRAPH), (SEP-GRAPH)

Test Platforms:
     Intel Silver 4210 10-core CPU,  128GB DRAM, 1 NVIDIA-GTX 2080Ti GPU( 34 
SMXs,  4352 cores, 11GB GDDR6 RAM)

Algorithms and Datasets:
p 4 graph analytical algorithms：

BFS, CC, SSSP, PageRank 
p 5 real world graphs, and 1 
     synthesized graph with 

Softeware Environment：
p Ubuntu 18.04 LTS
p CUDA 10.1 (418.67 driver)



Overall Results
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HyTGraph shows better performance
than the competitors on most cases.

p 2.01X-28.5X faster than ExpTM-F

p 2.4X-10.3X faster than ExpTM-C ( )

p 1.1X-6.5X faster than ImpTM-ZC ( )

p 2.4-13.1X faster than ImpTM-UM ( ) 



Transfer Reduction Analysis
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effectively reduces the 

data transfer, and its performance is 

close to the SOTA ( ).

achieves minimum data 

transfer on more graphs.

5.1X9.1X4.8X45.3X



Scaling-Up Performance

35

The experiments on synthesized graphs show that shows the best 
scaling-up performance when expanding the graph size by 64 times.
PageRank: (231.2X), (OOM), (111.6X), (105.4X)
SSSP: (111.8X), (OOM), (57.1X), (49.0X)
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Questions

                             Thanks for your listening


